
417 

REFERENCES 

1. WINCARR H., New Methods of Celestial Mechanics, Collected Works. 1, Nauka, Moscow, 1971. 
2. TRESHCHEV D.V., A failure mechanism for resonant tori of Hamiltonian systems, Matem. Sb. 9, 

1989. 
3. KOZLOV V-V., Integrability and non-integrability in Hamiltonian mechanics, Usp. Uat. Nauk, 

38, 1, 1983. 
4. ARNOL'D V.I., On the instability of Hamiltonian systems with many degrees of freedom, Dokl. 

Akad. Nauk SSSR, 156, 1, 1964. 
5. GRAFF S.M., On the conservation of hyperbolic tori for Hamiltonian systems, J. Diff. Eq., 

15, 1, 1974. 
6. BOLOTIN S.V., The existence of homoclinic motion, Vestn. MGU Ser. 1;'Mat. Mekh., 6, 1983. 
7. PALAIS R-S. and SMALE S., A generalized Morse theory, Bull. Amer. Math. Sot., 70, 1, 1964. 
8. DUBROVIN B.A., NOVIKOV S.P. and FOMENKO A.T., Modern Geometry, Nauka, Moscow, 1979. 

Translated by R.L.Z. 

PMM U.S.S.R.,Vol.54,No.3,pp. 417-420,199D 0021-8928190 $lO.OO+G.OO 
Printed in Great Britain 01991 Pergamon Press plc 

CONTROL OF THE SPEED OF RESPONSE OF PREDATOR-PREY SYSTEMS* 

V.B. KO~ANOVSKII and A.K. SPIVAK 

The problem of optimal of a predator-prey system is investigated. The 
existence of admissible control is established and the structure of 
optimal control is investigated. 

Problems of optimal control of biological communities have been studied in many papers; 
bibliographies are contained in /I, 2/. 

1. Statement of the pmbtem. The dynamics of the interaction of predators and prey are 
described by the equation 12.1 

%' W = i% - WI) =I, R' CT) = &.% - a*) Y, 0.9) 

where Xl (7) is the population density of the prey and 111 W that of the predators at time 
T, and a, are positive numbers characterizing the interspecific interactions. 

In practice, to influence the system purposefully, one uses various chemical preparations 
such as pesticides, which act only on the prey, or only on the predators, or on both populations 
simultaneously. 

First we will study the situation in which the control acts only on the prey. For the 
remaining two cases we restrict ourselves to describing the final result. 

We will change to dimensionless variables given by the formulae 

.z, (T) = ~,a,-% (I). y, (T) = a,@,-'y (t), 6 = ~~a,-', z = a,t 

Using the dimensionless variables in (l.l), the equations of the controlled system have 
the form 

I' (t) = (i - y) z - UZ, II' (t) = b (5 - 1) y (1.2) 
2 (0) = "0, Y (0) = %, 20 > 0, % > 0, t > 0 (1.3) 

The control u f#) satisfies the natural constraints 
a < U < y. y = const> 0 (1.4) 

For u=o, system (1.2) has two equilibrium positions in the x, y plane: the points (o,o) and 
(1, i)= I?. Because only the point A is of any actual interest, the controllers' objective is 
to take system (1.2) from an arbitrary initial position (zO, I/J 
possible time. 

to the position R in the least 
Thus if T (zO, go, u) is the instant when system (1.2) first reaches the point R, 
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the problem under consideration consists of the choice of a control function U@ such that 

infUr (x0, Y,, u) -= T (+ Y,, I+,) (1.5) 
We remark that for z,, = 0 (or yO=O), (1.2) implies that s(t)?0 (or y (t) 5 0). Hence 

the problem should only be considered with the additional constraints x0 > 0 and Y, > '1. 
Thus the statement of the problem comprises relations (1.2)-(1.5). 
The solution of systems (1.2) and (1.3) for any control lies strictly inside the first 

quadrant G for all t> O. In particular, for ~6.: 0 the solutions of systems (1.2) and (1.3) 
form a nested family of closed curves (Fig.l), all containing the point R in their interiors 
/3/, i.e. to reach the equilibrium position the use of control measures is essential. 

Note that the problem in question for y>l with an integral 
Y criterion of benefit was considered in /2/. 

2. Admissible cc&roZ. By an admissible control we mean 

1 
any measurable function u (f) satisfying (1.4) for which there 
is a solution of (1.2) and (1.3) that reaches the point R in a 
finite time. We shall study the question of the existence of 
admissible controls. 

I We consider the time-reversed solution of system (1.2) which 
starts at the point R with control u = Y. i.e. a solution of 
the following problem: 

0' I I I 2s’ (t) 7 (y -- 1)z -?- yz. y' (t) -= h (1 - s)y (2.1) 
I z z 5 (II) =-= 1, y (0) = 1, t 2 0 

Fig.1 
On the basis of relations (2.1) there exists an instant of 

time tl such that the solution of problem (2.1) satisfies the inequalities ~(t)>l, y (t)<i for 
TV 10,tll. We will denote this solution the interval [O,t,J by L. 

We now consider the closed domain U, bounded on the outside by a trajectory of motion of 
system (1.2) with U= 0, which intersects L at some point (Fig.1). This trajectory, the 
boundary of the domain U, will be denoted by r. In the domain U we will set the control 
to be equal to zero everywhere outside the curve L, and equal to y on L. By construction, 
for this choice of control the time taken for system (1.2) to reach the point R is finite for 
all &,J/~) E U, i.e. this control is admissible in the domain il. 

We will now construct a control U under which the time taken to reach the domain U is 
finite for all (zor&Z U, z,>O and go> 0. Let G, be the domain (O<z,<l, y>O/ U {1 is<% i. e, 

O<Y<f)* and let G, be the domain {G\G,), where E is a small number. In the domain 
GX \ G the control U= 0, while in G,\ u the control u. = y. 

We will show that with this control u the time taken for system (1.2) to reach the domain 
U is finite for all (Q, ya). To do this we introduce the Lyapunov function 

w = w (z (t). $ (t)) = (.z - 1 - In .c) -t b-’ (y - 1 - 111 y) 

Note that the function W has been used in investigations of the stability of the Vofterra 
model (see e.g. /4/). 

We compute the total derivative of the function W along the trajectories of system (1.2) 
under control u: 

W' = -.U (s - 1) (“2) 

We now consider an arbitrary trajectory of system (1.2) under control u, starting at a 
point (so, go)= U. Suppose this trajectory does not reach the boundary f of the domain U in 
any finite time. In this case, because of the form of (2.2) and the positive-definiteness of 
the function W, the trajectory under consideration will always remain in a bounded domain, and 
consequently, from (1.2), it will circle the domain U an infinite number of times. During each 
circuit the time spent in the domain G,\ 1: is bounded from below by some positive constant. 
But then, integrating both sides of (2.2) with respect to tine, we find that PV(zft),y (t))--- 33 
for t-t=, which is impossible because it contradicts the positive-definiteness of the func- 
tion W. 

We have thus constructed an admissible control for the problem under consideration. 
The existence of a fastest-acting control follows from this result and from /5/. 

3. The structure of the opt&z2 contr=oZ loCl. We will investigate the form of the OC 
with the help of the maximum principle 161. Let ql(t) and lj7z (0 be conjugate variables 
satisfying the equations 

9; (t) = --amar = IQ, (y -- 1 c u) - bq,ay (3.1) 

92' V) = --dxiay =*,x t bq4 (1 -- x) 

H = x& + T& (i - y -- u) -h bW2 (z --- l)y, q0 = const < 0 (3 .Z) 

On the basis of the existence of an OC established above, and the maximum principle, we 
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will find a non-zero solution of Eqs.(3.1) such that the function H reaches its maximum value, 
qua1 to zero, at the OC. By (3.2) this means that the optimal control w. is found by maximis- 
ing the expression cp= -*luz with respect to U. Hence it is clear that u@=y if $1 <O 
and uo=O if h>O. 

We will show that the function lpl does not vanish over whole intervals. Suppose this is 
not the case and that the function &(t) vanishes in some interval I:-7tO,Tl. Then 91’ (t) = 0 
for t =I. Consequently, from the first equation of (3.1), we also have &(t) = O for t E I. 
Hence the conjugate variables $1 and qa simultaneously vanish, which is impossible by the 
maximum principle. It can be similarly shown that the zeros of the function q,(t) are simple. 
Consequently, the optimal control U, takes only its extreme values (i.e. either 0 or yf and 
is a piecewise constant function. 

Further construction of the OC of system (1.21, together with its optimal trajectories, 
is performed numerically. There are two cases: y>l and o<y<l. 

The results of computer calculations of optimal trajectories (OT) and "switch" lines (SL) 
for system (1.2) with parameters b=l and y= 1 are shown in Fig.2. The lines AR and RB 
are SLs, the curveAR being a controlled trajectory of system (1.2). The procedure for con- 
structing the OTs and the SLRB was based on comparing the times taken by system (1.2) to 
reach the equilibrium position R from various initial states &,,y,,) with various 
control laws. The points of the curve RB together with the optimal control 
law for system (1.2) were found from this comparison. If at the initial moment t,= o 
the system is in position Q, then it moves along a controlled trajectory (~=y) until it 
reaches position S. At the point S the control switches and the system begins to move along 
the uncontrolled trajectory (u= 0) to the point P, where there is another control switch and 
the system moves along the SL Ai? to position R. 

If the initial position of the system is the point N, then the system moves along the 
uncontrolled trajectory (u==O) to the point P. There a switch occurs and the system moves 
along the controlled trajectory to the point R. 

The results obtained show that for r>f and from any initial position (+yO), system 
(1.2) reaches the equilibrium position R with no more than two switches in the optimal control. 

Fig.3 shows the x-dependence of the Bellman function vb, Y) (the value of the least time) 
for the case under consideration. 

It is clear that as x increases, the time of the system to reach the equilibrium position 
increases if y>l, but that if Y<i the value of V&y) decreases as the initial position 
approaches the SLAR from the left. As soon as the initial position is to the right of the 
curve AR, there is a sharp increase in the least time. 

When y is increased (y> f), the SL shown in Fig.2 remain essentially the same, The 
point S approaches R, the curvature of the curve SR decreases and the points of the curve 
APR shift to the right. 

0 1 2 

Fig. 2 

I 2 3x 

Fig.3 

Fig.4 Fig.5 
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Fig.4 shows the OTs and the SL ANRSB of system (1.2) for b= 1 and y-0,4. It is 
clear that here the situation is quite different from the case y > 1. The section NR of 
the switch line ANRSB is a segment of a trajectory of system (1.2) with u= y. The point R 
can be reached with no more than two switches of the OC only if the initial position lies in 
the closed domain bounded by the curve PSDNP. If the initial position lies outside this domain, 
then the number of switch points on the OT will always be greater than two. For *, < 1 and 
Y,<f, the point (zO,yo) approaches R and the time taken to reach R and the number of switches 
of the OT decreases as the values of the initial coordinates increase. If however %I > 1 
and Y,>*, then as they increase the number of switch points of the GC and the time to reach 
the equilibrium position R increase. 

4. We will give the results of computer calculations for the case when the control (pesti- 
cides) acts only on the predators, i.e. for a controlled system of the form 

5. (t) = (1 - y) 5, g’ (t) = b (2 - 1) y - ug (4.1) 

2 (0) = XiJ, y (0) =z Y,, z, > 0, Yo > 0, t z 0 (4.2) 

where the control u satisfies the constraints (1.4). 
In this case the situation is qualitatively independent of the value of y. Fig.5 shows 

the OTs and the SL APRSB of system (4.1) for b = 1 and p=l. The segment APR is part of 
a trajectory of system (4.1) for LC= v. The curves in Fig.5 show that the OC of system (4.1) 
has no more than two switch points. 

The least time was also computed. The calculations showed that when y increases from 
values smaller than unity to values greater than unity with X fixed, there is at first a 
decrease in the time taken to reach the equilibrium position, and then a sharp increase. Similar 
results were obtained for fixed y and for X increasing from values smaller than unity to 
values greater than unity. 

Changing y does not significantly affect the form of the controlled trajectories of 
system (4.1); as y increases their concavity increases and the point A shifts to the right. 
The number of switches of an OT of system (4.1) is never greater than two. 

The speed-of-response problem was similarly investigated for arbitrary values of the par- 
ameters b and y. 

We note that the problem of the control of the speed of response of a system of the form 
(4.11, in which the term u replaced the term uy, (i.e. the effectiveness of the pesticide does 
not depend on the number of predators), was investigated in /l/. 
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